
Anomaly Detection

University of Southern Denmark

Faculty of Engineering

Project report (group 5)

Authors:

Rokas Andrijauskas, 4129184, roand21

Johnni Damgaard Jensen, 4126546, johje23

Nicolai Nguyen, 494387, ningu20

Theodor Paal Põlluste, 4124538, thpul23

Supervisors:

Jakob Wilm, SDU, jaw@mmmi.sdu.dk

Jonathan Bøss, SDU, jboe@mmmi.sdu.dk

2

1 Introduction
Nowadays, artificial intelligence (AI) and machine learning are significant topics that many people and

industry utilize in their daily lives. AI and machine learning have rapidly grown in the recent years and

are still expanding. The advances in computing and in the field of AI are correlated to the performance

of anomaly detection, which is also referred to as outlier detection. Anomaly detection is used for identify

certain items, events or observations which deviate significantly from the majority of the data. The use

of anomaly detection can be found in many application including detecting defects in the manufacturing

process. Here it can be used as visual inspection to look at the quality of the product and its condition.

The anomaly detection algorithms are trained on anomaly-free images as gathering dataset of all possible

anomalies might be impossible. Gathering dataset of anomalies can also be expensive.

In industry time is usually one of the crucial factors and companies might not want to use a lot time

and manual labor for detection every single anomaly which goes through the production. This is where

anomaly detection offers a great solution by offering an unsupervised tool to find these anomalies with

high efficiency.

This project will focus on getting a deep understanding into how anomaly detection works. more specif-

ically it will look into the SimpelNet algorithm understanding the structure and methodology it used to

achieve its output.

Furthermore we will test, evaluate and comment on the results given by the algorithm when tested on

both MVTEC-dataset, which is the standard used in the field for testing anomaly algorithms, but also on

a dataset which was made in-house. A description of the data gathering process will be included. This

is done to test the SimpelNet algorithm in a scenario were the images deviates a small bit from the data

in MVTEC but also to see if the algorithm hold up in realistic applications.

Throughout the project we will try to understand what makes SimpelNet unique, for it to achieve better

result that other state of the art algorithms at that time and finally compare it to a current state of the

art algorithm called EfficientAD.

3

2 Related works
Anomaly detection can be categorised in to three main types: reconstruction-based, synthesizing-based,

and embedding-based.

Reconstruction-based methods, stem from the idea that anomalous regions should not be able to be ac-

curately reconstructed since the algorithm has only seen good images. Some methods [4, 7] make use of

auto-encoders, they are neural networks that have bottleneck in the middle. This bottleneck learns some

representation of the image as it has lower dimension than the input. Its task is to find the best repre-

sentation to decode the image as good as it can. Other methods [9] make use of generative adversarial

networks (GANs). They have two main components a discriminator that tries to detect if the image is

generated or real and generator that tries to fool the discriminator. The generator is well trained when

the discriminator can not distinguish real image from generated one. In this case it should produce syn-

thetic images that have the distribution of real good images. Generated synthetic data can be compared

with real data to see if there are anomalies, also the discriminator should be able to detect if there is

something abnormal about the image. These methods may struggle when anomalies share compositional

patterns with normal data.

Synthesizing-based methods generate anomalies directly on anomaly-free images. Some methods use end-

to-end neural network to generate just out of the distribution patterns or simpler methods like CutPaste

[8] which cuts a patch from image and places it in different location. Then CNN is trained to distinguish

between good images and synthesised anomalous images. Since it is impossible to generate every possible

case of anomalies and the generated anomalies might not even closely match real anomalies, SimpleNet

proposes generating anomalies in feature space instead of directly on images.

Embedding-based methods have shown to achieve state of the art performance by embedding normal

features into a compressed space. It is expected that anomalous features will be distant from normal

clusters in the embedding space. A lot of algorithm rely on a network that has been pretrained on Ima-

geNet [2, 1] in order to extract features. ImageNet is a large dataset of over a million images that have

been classified to over thousands of distinct classes.

SimpleNet is an approach that extracts the features from network (ResNet) that was pretrained on

ImageNet, synthesizes anomalies in the feature space and adapts features to domain that differs from

ImageNet. The aim of SimpleNet for fast training, inference, and accuracy in industrial application makes

it an interesting case in anomaly detection research.

4

3 Methods

3.1 SimpleNet

This project will utilize SimpleNet, an anomaly detection network capable of identifying and locat-

ing anomalies. SimpleNet comprises four key components: a pre-trained Feature Extractor, a Feature

Adapter, an Anomaly Feature Generator, and an Anomaly Discriminator. Figure 1 illustrate the archi-

tecture of SimpleNet. During the training, nominal samples are fed into the feature extractor to extract

local features. These features are then adapted to the to the target domain using Feature Adaptor.

Anomalous features are generated by introducing Gaussian noise to the adapted features. Both the

adapted features and the anomalous features are used to train the Discriminator to distinguish between

the classes. During the inference, the Anomalous Features Generator is not utilized.

Figure 1: Overview of SimpleNet[12].

3.1.1 Feature Extraction - Local Features

In image processing, local features refers to a pattern or distinct structure found in an image, such

as a point, edge, or small image patch. A standard way to extract features from an image is to use

Convectional Neural Network (CNN). A problem with a standard CNN architecture is that it can not

have a lot of layers connected to it. The problem is called ”vanishing gradient” problem. The gradients

used to update the network become too small to be meaningful. This problem was solved in ResNet [5].

It relies on residual learning. Instead of network trying to learn output H(x) directly from the input x,

it learns the residual instead. R(x) = H(x) − x. Rewriting equation we get H(x) = R(x) + x. In the

network architecture this summation of the residual with the input is called skip connection, it is an

additional path for which the gradient can pass through the network. This allows for training deeper

networks. Local features are then extracted from feature maps. This is done because anomalies often

manifest as local deviations from the norm within an image. By focusing on local features, SimpleNet

can effectively capture these deviations and identify anomalous regions. From pre-trained ResNet-like

backbone feature maps from different hierarchy levels are taken into account, from each level for each

channel of feature map a neighbourhood regions are aggregated into local features. Adaptive average

pooling function is used during aggregation. These local feature maps from different hierarchical levels

5

are the combined into one feature map simply by resizing them linearly to the size of largest one and

concatenating them.

3.1.2 Feature Adapter - Adapted Features

Figure 2: Histogram of standard deviation of local and adapted features accross each dimension.

The images on which pre-trained network was trained most likely differ significantly from industrial

images on which we are doing anomaly detection. For that reason it is important to adapt the extracted

local features to better match the target domain. This can be achieved by passing local features through

a fully connected neural network. Authors of SimpleNet have experimentally determined that just one

layer of neural network is sufficient to adapt the features to target domain [12]. The resulting adapted

features figure 2 result in smaller standard deviation along each dimension making adapted feature space

more compact.

3.1.3 Anomalous Feature Generator - Anomalous Features

In order to train the Discriminator to distinguish between normal and anomalous samples, SimpleNet

introduces a bit of randomness to the normal samples. By adding Gaussian noise to the normal features,

anomalous features will be created. Their distribution will differ from normal samples. This approach

has shown to be more effective than methods that manipulate defect images directly [12], which also is

the thing that SimpleNet differs from other networks.

3.1.4 Discriminator - Anomaly Maps

The Discriminator Dψ in the SimpleNet architecture plays a crucial role in anomaly detection.

Function:

The Discriminator acts as a normality scorer, evaluating the normality of features at each location directly.

During training, its primary task is to distinguish between normal and anomalous features.

Structure:

1. Input: It receives input from both normal features and anomalous features.

6

2. Architecture: It employs a simple 2-layer multi-layer perceptron (MLP) structure, similar to

traditional classifiers, which suits the purpose of distinguishing between normal and anomalous

features.

3. Output: The Discriminator produces an output, Dψ(qh,w), which represents the estimated nor-

mality score at each location (h,w). For normal features, it expects a positive output, while for

anomalous features, it expects a negative output.

Training:

During training, both normal and anomalous samples are fed into the Discriminator. This enables it to

learn to differentiate between the two types of features effectively. The goal is for the Discriminator to

assign positive scores to normal features and negative scores to anomalous features. This discriminator

is using leaky-relu to avoid the dying relu problem where network becomes inactive and stop learning

entirely. Leaky-relu includes negative values meaning the neurons will not get inactive which means

higher efficiency.

Overall Purpose:

It uses the normality scores to determine weather or not the location has deviations from the norm. It is

essentially a classifier which determines if there is an anomaly or not.

7

3.2 Pipeline

The overall pipeline of the SimpelNet algorithm is also shown using Pseudo-code below.

Algorithm 1 SimpleNet training pseudo-code

F: Feature Extractor

G: Feature Adaptor

N: i.i.d Gaussian noise

D: Discriminator

pretrain_init(F)

random_init(G, D)

for x in data_loader:

o = F(x) # normal features

q = G(o) # adapted features

q_ = q + random(N) # anomalous features

loss = loss_func(D(q), D(q_)). mean()

loss.backward () # back -propagate

F = F.detach () # stop gradient

update(G, D) # Adam

loss function

def loss_func(s, s_):

th_ = -th = 0.5

return max(0, th -s) + max(0, th_+s_)

3.3 Data Gathering and Setup

The setup used for gathering data on the glass fiber consisted of a UR5 robot with an industrial camera

installed at the tool center point point directly downwards. A Python script was created to operate the

robot, capturing three images for each setup with slight movements between each shot. However, the

camera positions remained consistent for each setup. The anomalies we setup was more or less obvious

seen from a human perspective. This included tools, nuts, small metal parts and folding the fabric in

different ways. Once the data was gathered we then made some ground truth data such that everything

needed for training the SimpelNet on the glass fiber was possible.

8

Figure 3: Setup for gathering data on glass fiber

3.4 Evaluation of Data

3.4.1 Receiver Operating Characteristics Curve

The receiver operating characteristics (ROC) graph is used most commonly to evaluate the performance

of anomaly detection algorithms. ROC graphs have been utilized in the machine learning community

due to the realization that simple classifications like accuracy are often a poor metric for measuring the

algorithm’s performance [10]. ROC graphs are two-dimensional graphs in which true positive rate (also

called hit rate and tpr) is plotted on the Y axis and false positive rate (also called fpr) is plotted on the X

axis. On the graph the diagonal line y = x represents the strategy of randomly guessing a class. This is

well showcased due to the diagonal crossing the (0.5,0.5) point. This means that any classifier appearing

to the lower right triangle performs worse than randomly guessing, thus the triangle is usually empty. To

generate a curve on the ROC graph, thresholds are implemented, where the tpr and fpr are calculated

for each threshold [3]. The thresholds can go from 0 to +∞, where the threshold value 0 produces the

point (1,1) and +∞ produces the point (0,0) on the ROC graph. An example of a ROC curve is visible

in Figure 4.

9

instance scores. A classier need not produce accurate, cal-
ibrated probability estimates; it need only produce relative
accurate scores that serve to discriminate positive and neg-
ative instances.

Consider the simple instance scores shown in Fig. 4,
which came from a Naive Bayes classier. Comparing the
hypothesized class (which is Y if score > 0.5, else N) against
the true classes, we can see that the classier gets instances
7 and 8 wrong, yielding 80% accuracy. However, consider
the ROC curve on the left side of the gure. The curve rises
vertically from (0,0) to (0,1), then horizontally to (1,1).
This indicates perfect classication performance on this test
set. Why is there a discrepancy?

The explanation lies in what each is measuring. The
ROC curve shows the ability of the classier to rank the
positive instances relative to the negative instances, and it

is indeed perfect in this ability. The accuracy metric
imposes a threshold (score > 0.5) and measures the result-
ing classications with respect to the scores. The accuracy
measure would be appropriate if the scores were proper
probabilities, but they are not. Another way of saying this
is that the scores are not properly calibrated, as true prob-
abilities are. In ROC space, the imposition of a 0.5 thres-
hold results in the performance designated by the circled
‘‘accuracy point’’ in Fig. 4. This operating point is subop-
timal. We could use the training set to estimate a prior for
p(p) = 6/10 = 0.6 and use this as a threshold, but it would
still produce suboptimal performance (90% accuracy).

One way to eliminate this phenomenon is to calibrate
the classier scores. There are some methods for doing this
(Zadrozny and Elkan, 2001). Another approach is to use
an ROC method that chooses operating points based on
their relative performance, and there are methods for doing
this as well (Provost and Fawcett, 1998, 2001). These latter
methods are discussed briey in Section 6.

A consequence of relative scoring is that classier scores
should not be compared across model classes. One model
class may be designed to produce scores in the range
[0,1] while another produces scores in [1,+1] or [1,100].
Comparing model performance at a common threshold will
be meaningless.

4.2. Class skew

ROC curves have an attractive property: they are insen-
sitive to changes in class distribution. If the proportion of
positive to negative instances changes in a test set, the
ROC curves will not change. To see why this is so, consider
the confusion matrix in Fig. 1. Note that the class distribu-
tion—the proportion of positive to negative instances—is
the relationship of the left (+) column to the right () col-
umn. Any performance metric that uses values from both
columns will be inherently sensitive to class skews. Metrics
such as accuracy, precision, lift and F score use values from
both columns of the confusion matrix. As a class distribu-
tion changes these measures will change as well, even if the
fundamental classier performance does not. ROC graphs
are based upon tp rate and fp rate, in which each dimension
is a strict columnar ratio, so do not depend on class
distributions.

To some researchers, large class skews and large changes
in class distributions may seem contrived and unrealistic.
However, class skews of 101 and 102 are very common in
real world domains, and skews up to 106 have been
observed in some domains (Clearwater and Stern, 1991;
Fawcett and Provost, 1996; Kubat et al., 1998; Saitta and
Neri, 1998). Substantial changes in class distributions are
not unrealistic either. For example, in medical decision
making epidemics may cause the incidence of a disease to
increase over time. In fraud detection, proportions of fraud
varied signicantly from month to month and place to
place (Fawcett and Provost, 1997). Changes in a manufac-
turing practice may cause the proportion of defective units

Infinity

.9

.8 .7

.6

.55

.54 .53 .52

.51 .505

.4 .39

.38 .37 .36 .35

.34 .33

.30 .1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

False positive rate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
ru

e
p

o
si

ti
v

e
ra

te

Inst# Class Score Inst# Class Score

1 p .9 11 p .4

2 p .8 12 n .39

3 n .7 13 p .38

4 p .6 14 n .37

5 p .55 15 n .36

6 p .54 16 n .35

7 n .53 17 p .34

8 n .52 18 n .33

9 p .51 19 p .30

10 n .505 20 n .1

Fig. 3. The ROC ‘‘curve’’ created by thresholding a test set. The table
shows 20 data and the score assigned to each by a scoring classier. The
graph shows the corresponding ROC curve with each point labeled by the
threshold that produces it.

864 T. Fawcett / Pattern Recognition Letters 27 (2006) 861–874

Figure 4: The ROC “curve” created by thresholding an example set. The graph shows the corresponding ROC

curve with each point labelled by the threshold that produces it [3].

3.4.2 I-AUROC, P-AUROC and PRO-AUROC

The Image-Level AUROC (I-AUROC) shows the algorithm’s performance in correctly classifying entire

images as anomalous. The I-AUROC is generated from the heat map of each image that the algorithm

outputs.

SAD(xi) := max(sihw) where (h,w) ∈ W0 ×H0

The score SAD is the maximum value of the anomaly heat map for that image. Sihw represents the

probability of the pixel (h,w) in the heat map of image xi being anomalous. The maximum value, SAD

is then the most anomalous point in the image, giving us a single score per image. These scores are used

to make the ROC curve for I-AUROC [12].

The Pixel-Level AUROC (P-AUROC) shows the performance of the algorithm in detecting anomalies at

the pixel level. It shows how well the algorithm localizes the anomaly in the picture. This metric uses all

the pixels individually from the anomaly heat map Sihw. The ROC curve is then generated by comparing

the pixel-wise anomaly scores with the ground truth binary mask, where each pixel is labeled as either

normal or anomalous. These ground truths are generated manually and are simple black-and-white im-

ages. P-AUROC measures how well the algorithm can distinguish between normal and anomalous pixels

across the entire image [12].

In addition to P-AUROC, the Per-Region-Overlap (PRO) score is used to evaluate anomaly localiza-

tion performance further. This metric addresses the bias of P-AUROC towards larger anomalies. It does

that by weighting ground-truth regions of different sizes equally. The PRO score ensures that smaller

anomalies are given the same power in the evaluation, thus providing a more balanced assessment of the

algorithm’s localization performance [6].

10

4 Results
Upon training the SimpleNet algorithm with the hyperparameters specified by the authors on the

MVTEC-dataset, the results were as follows:

Figure 5: AUROC scores (Instance, Pixel-wise and Per Region Overlap) for each of the object included in MVTEC

dataset.

In figure 5 the score of the I-, P- and PRO AUROC are plotted against each of classes from the MVTEC-

dataset. The I-AUROC evaluates the overall performance of anomaly detection at the image level,

indicating the overall performance of the model in detecting anomalies in the entire images. The P-

AUROC evaluates the performance of anomaly detection at the pixel level. In all these different classes

in the MVTec dataset, the I-AUROC score are for the most always higher than the P-AUROC and the

PRO-AUROC. The reason for higher I-AUROC scores can due to simpler task and also anomaly spread.

The I-AUROC is generally an easier task, because it only has to identify whether an image as a whole

contains an anomaly and does not require a precise localization. Anomaly can also be widespread or easy

to identify at the image level.

11

Figure 6: Image wise and Pixel wise AUROC scores for different algorithms using different approaches, on MVTec-

dataset

Figure 6 demonstrates, among the showcased data, that the embedding-based approach outperforms the

reconstruction-based and synthesizing-based, which is the method employed by SimpleNet. The thing

that makes this approach so good is its ability to transform data into lower dimensional space where

normal and abnormal patterns are more distinct and easier to identify.

Figure 7: Comparison of SimpleNet with State-of-the-Art Works on MVTec AD. Image-wise AUROC (I-AUROC)

and pixel-wise AUROC (P-AUROC) are displayed in each entry as I-AUROC%/P-AUROC%[12].

Upon examining the comparison between SimpleNet and other state-of-the-art algorithms in figure 7, it

becomes apparent that, on average, SimpleNet outperforms its counterparts. Notably, the embedding-

based methods demonstrate superiority over reconstruction-based and synthesizing-based approaches,

with the reconstruction-based method exhibiting the lowest performance. SimpleNet primarily falls un-

der the category of embedding-based methods. In their paper, the authors mention that their approach

12

bears resemblance to the PatchCore algorithm [12].

Whether these results in figure 7 stem from inherent differences in the performance of the algorithms or

are due to parameter tuning remains to be considered.

Model I-AUROC% P-AUROC% Layers Total param (M)

ResNet18 98.3 95.7 18 11.7

ResNet50 99.6 98.0 50 25.6

ResNet101 99.2 97.6 101 44.5

WideResNet50 99.6 98.1 50 68.9

Table 1: Performance under different backbones on MVTec AD [12] [11].

Table 1 showcases the stability of the SimpleNet algorithm across various backbone datasets used in the

feature extraction phase. It can be see that at ResNet18 it start going down in AUROC scores quite fast

so it looks like going below 18 layers can potentially cause problems[11].

13

Figure 8: Greyscale, Ground Truth and Anomaly Heatmap for our data (160 epochs) using SimpleNet. Fourth

column Anomaly Heatmap using EfficientAD (60000 epochs)

14

To conduct training using the data collected in our laboratory, we adopted the original hyperparameters

as specified by the authors in their publication [12]. This approach ensured consistency and compara-

bility with the results. In figure 8 we observe the Anomaly Heat Map corresponding to the grayscale

image. Overall, the detector performs admirably, accurately identifying anomalies. Notably, it excels in

detecting edges and smaller details like the screwdriver. EfficientAD produces similar anomaly heatmaps,

but they seem to be more localized. However, upon comparing the heatmap with its binary ground truth

image, it becomes apparent that our ground truth data may require refinement. It seems we haven’t fully

grasped the ideal methodology for creating this ground truth data, which is a misstep on our part likely

to impact the AUROC scores. Again it is important to note that SimpelNet is an unsupervised learning

algorithm so it is not using the ground truth data for anything but the AUROC calculations.

Figure 9: AUROC scores on glass fiber (Our data)

Examining figure 9, it becomes evident that the AUROC scores associated with the Glass Fiber dataset are

notably inferior compared to those obtained from the MVTEC dataset. This observation initially suggests

that the performance of the SimpelNet Anomaly Detection algorithm diminishes when confronted with

data that diverges from the characteristics of the MVTEC dataset. However, such discrepancies likely

stem from additional influencing factors. The computation of AUROC scores relies on the utilization of

anomaly heatmaps in conjunction with ground truth data. In the case of the Glass Fiber dataset, the

creation of ground truth data was performed in-house, potentially leading to inaccuracies in marking the

precise locations of anomalies within the dataset. Examples of these discrepancies can be seen in select

images depicted in figure 8.

15

Figure 10: Performance of SimpleNet trained on 90 good images versus 2 images.

Figure 10 shows comparison of SimpleNet trained on different number of good glass-fiber images. It

is visible that a good performance can be achieved with minimal amount of data. This is most likely

because of the fact that in manufacturing setting images of good products do not change much. At least

in our case the lighting and glass-fiber placement was similar. Although it is still desirable to have more

training data if possible as every additional correct identification of manufacturing goods will result in

cost savings.

Figure 11: AUROC scores (Image wise, pixel wise & Per region overlap) for each metaepoch(one metaepoch is

equal to four epochs).

Figure 11 shows the different AUROC scores as a result of how many epoch there have been use in

training at that time. The rapid initial improvement followed by stabilization suggests effective training

and consistent anomaly detection capabilities. One takeaway from this is that it might not be necessary

to use so many epochs for training, as the model’s performance stabilizes after 15 epochs.

16

Figure 12: I-AUROC graph of trained model

In figure 12 we can see that a threshold of 0.14 would perform best in a factory setting. This would result

in around 36% of glass-fiber sheet to be falsely identified as having anomaly when being good and all of

the glass-fibers that have an anomaly would be correctly identified as having anomalies.

Figure 13: AUROC graph for state of the art EfficientAD algorithm on our data (glass fiber)

In figure 13 the AUROC graph of state of the art anomaly detection algorithm EfficientAD can be

seen. EfficientAD showcases a very strong performance with a AUC = 0.97 and a false positive rate of

approximately 25% while guaranteeing detection of all anomalies. The result of the EfficientAD algorithm

shows that for industrial use it will outperform due to the lower false positive rate. EfficientAD also

outperforms SimpleNet in throughput. EfficientAD achieved a latency of less than 4ms corresponding

to 250FPS which is more than triple the throughput delivered by SimpelNet[7]. The difference between

17

those two algorithms is not that apparent on MVTec-dataset. SimpleNet achieves 99.6% I-AUROC and

EfficientAD 99.8%. The difference might stem from the possibility that SimpleNet is worse for gray scale

images, materials or it might be a simple case of needing a better tuning of the parameters.

18

5 Conclusion
Taking a thorough look into the SimpelNet algorithm has given us clearer understanding of quite a lot of

aspect, some of which are related to the algorithm itself and others which are more general for anomaly

detection and AI.

We have gained a really good in dept understanding on how SimpelNet works when it comes to both

feature extraction, and its anomaly localization methods. We also gained good insight into the efficiency

of being good at adapting feature to target domains and being good at putting data into lower dimension

to easier see the difference between what is normal and abnormal.

Furthermore we have gained a good insight into how these algorithms are evaluated, using ground truth

data to get AUROC scores and curves and also enlightened to us why this is have challenges and limi-

tations in industry. In industry it is not certain that the company will make this ground truth data to

evaluate their performance and if this is the case, they will have to come up with other ways of evaluating

the implementation.

It can also be concluded that SimpelNet did a fairly good job when evaluating it on the glass fiber dataset

we made which differs quite a bit from the MVTEC-dataset. The AUC scores of 0.93 and a reasonably

promising ROC curve give us the indication that SimpelNet is easy to implement and can certainly be

beneficial for industrial use.

Additionally, our study included practical aspects of setup, testing, and training methods. We examined

the importance of backbone feature extractors in SimpleNet’s architecture and understood the details of

AUROC score calculations, highlighting the crucial role of ground truth data in this process.

The comparison between figure 12 and figure 13 reveals that although SimpleNet shows promise, it does

not surpass the performance of EfficientAD in industrial applications. EfficientAD, one of the top three

state-of-the-art algorithms, achieves a notably lower false positive rate in anomaly detection and a higher

throughput. This efficiency is often crucial in an industrial context, as it minimizes the unnecessary

rejection of good products. It is to be mentioned that this is the result we got from running the code on

our dataset and it might not apply for other dataset or scenarios.

These anomaly detection methods does not yet offer an absolute 100% detection rate meaning that there

is still improvements to be made before it is possible to make the whole process completely unsupervised.

In essence, our time spent understanding SimpleNet has not only broadened our understanding of anomaly

detection algorithms but also equipped us with practical insights into their implementation and evalua-

tion.

19

References
[1] Thomas Defard, Aleksandr Setkov, Angelique Loesch, and Romaric Audigier. Padim: a patch

distribution modeling framework for anomaly detection and localization, 2020.

[2] Hanqiu Deng and Xingyu Li. Anomaly detection via reverse distillation from one-class embedding,

2022.

[3] Tom Fawcett. An introduction to roc analysis. Pattern Recognition Letters, 27(8):861–874, 2006.

ROC Analysis in Pattern Recognition.

[4] Dong Gong, Lingqiao Liu, Vuong Le, Budhaditya Saha, Moussa Reda Mansour, Svetha Venkatesh,

and Anton van den Hengel. Memorizing normality to detect anomaly: Memory-augmented deep

autoencoder for unsupervised anomaly detection, 2019.

[5] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-

nition, 2015.

[6] Chao Huang, Zhao Kang, Hong Wu, and et al. A prototype-based neural network for image

anomaly detection and localization. PREPRINT, 10 2022. Version 1, available at Research Square

https://doi.org/10.21203/rs.3.rs-2184057/v1.

[7] Rebecca König Kilian Batzner, Lars Heckler. Efficientad: Accurate visual anomaly detection at

millisecond-level latencies. 02 2024. Available at https://arxiv.org/pdf/2303.14535v3.

[8] Chun-Liang Li, Kihyuk Sohn, Jinsung Yoon, and Tomas Pfister. Cutpaste: Self-supervised learning

for anomaly detection and localization, 2021.

[9] Federico Di Mattia, Paolo Galeone, Michele De Simoni, and Emanuele Ghelfi. A survey on gans for

anomaly detection, 2021.

[10] Foster Provost and Tom Fawcett. Robust classification for imprecise environments. Machine Learn-

ing, 42:203–231, 01 2001.

[11] Sergey Zagoruyko, Nikos Komodakis. Wide residual networks.

[12] Yuansheng Xu Zhikang Liu, Yiming Zhou and Zilei Wang. Simplenet: A simple network for image

anomaly detection and localization. 03 2023. Available at https://arxiv.org/pdf/2303.15140v2.

